Rectangle-capped and tilted micropillar array for enhanced anisotropic anti-shearing in biomimetic adhesion.
نویسندگان
چکیده
Dry adhesion observed in the feet of various small creatures has attracted considerable attention owing to the unique advantages such as self-cleaning, adaptability to rough surfaces along with repeatable and reversible adhesiveness. Among these advantages, for practical applications, proper detachability is critical for dry adhesives with artificial microstructures. In this study, we present a microstructured array consisting of both asymmetric rectangle-capped tip and tilted shafts, which produce an orthogonal anisotropy of the shearing strength along the long and short dimensions of the tip, with a maximum anti-shearing in the two directions along the longer dimension. Meanwhile, the tilt feature can enhance anisotropic shearing adhesion by increasing shearing strength in the forward shearing direction and decreasing strength in the reverse shearing direction along the short dimension of the tip, leading to a minimum anti-shearing in only one of the two directions along the shorter dimension of the rectangular tip. Such a microstructured adhesive with only one weak shearing direction, leading to well-controlled attachment and detachment of the adhesive, is created in our experiment by conventional double-sided exposure of a photoresist followed by a moulding process.
منابع مشابه
Biologically Inspired Four Elements Compact Antenna Arrays With Enhanced Sensitivity for Direction of Arrival Estimation
A new four elements compact antenna array is presented and discussed to achieve enhanced phase resolution without sacrificing the array output power. This structure inspired by the Ormia Ochracea’s coupled ears. The analogy between this insect acute directional hearing capabilities and the electrically compact antenna array is used to enhance the array sensitivity to direction of arrival estima...
متن کاملDirectional imbibition on a chemically patterned silicon micropillar array.
Directional imbibition of oils (hexadecane, tetradecane, and dodecane) and water is demonstrated on a chemically patterned silicon micropillar array. Four different directional imbibition types are shown: unidirectional, two types of bidirectional and tridirectional imbibition. The surfaces consist of a silicon micropillar array with an overlaid surface chemistry pattern. This configuration lea...
متن کاملPerceptions of depth elicited by occluded and shearing motions of random dots.
A computer-controlled display of random dots was used to study perceptions of depth. In this display, a field of stationary random dots surrounded a rectangular area in which random dots moved with uniform velocity in a single direction. The boundaries of this rectangle did not move. When dot motion was perpendicular to the longer boundary of the rectangle (occluded motion), the rectangle seeme...
متن کاملStick-slip friction of gecko-mimetic flaps on smooth and rough surfaces.
The discovery and understanding of gecko 'frictional-adhesion' adhering and climbing mechanism has allowed researchers to mimic and create gecko-inspired adhesives. A few experimental and theoretical approaches have been taken to understand the effect of surface roughness on synthetic adhesive performance, and the implications of stick-slip friction during shearing. This work extends previous s...
متن کاملUniform Cell Distribution Achieved by Using Cell Deformation in a Micropillar Array
The uniform dispersion of cells in a microchamber is important to reproduce results in cellular research. However, achieving this is difficult owing to the laminar flow caused by the small dimensions of such a chamber. In this study, we propose a technique to achieve a uniform distribution of cells using a micropillar array inside a microchamber. The cells deform when they pass through a gap be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 12 106 شماره
صفحات -
تاریخ انتشار 2015